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Revisiting Embedding-based Entity Alignment:
A Robust and Adaptive Method
Zequn Sun, Wei Hu*, Chengming Wang, Yuxin Wang, Yuzhong Qu

Abstract—Entity alignment—the discovery of identical entities across different knowledge graphs (KGs)—is a critical task in data fusion.
In this paper, we revisit existing entity alignment methods in practical and challenging scenarios. Our empirical studies show that current
work has a low level of robustness to long-tail entities and the lack of entity names or relation triples. We aim to develop a robust and
adaptive entity alignment method, and the availability of relations, attributes, or names is not required. Our method consists of an attribute
encoder and a relation encoder, representing an entity by aggregating its attributes or relational neighbors using the attention mechanisms
that can highlight the useful attributes and relations in end-to-end learning. To let the encoders complement each other and produce a
coherent representation space, we propose adaptive embedding fusion via a gating mechanism. We consider four evaluation settings, i.e.,
the conventional setting with both relation and attribute triples, as well as three challenging settings without attributes, without relations,
without both relations and names, respectively. Results show that our method can achieve state-of-the-art performance. Even in the most
challenging setting without relations and names, our method can still achieve promising results while existing methods fail.

Index Terms—knowledge graph embedding, entity alignment, adaptive embedding fusion.
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1 INTRODUCTION

AKnowledge graph (KG) is a repository of structured
facts about the real world. Each fact is either a relation

triple (subject entity, relation, object entity) or an attribute triple
(entity, attribute, value). In recent years, many applications,
such as question answering [14], recommender systems [41]
and semantic search [48], incorporate KGs to help build
their intelligence capabilities. However, as a KG is inherently
incomplete, it frequently fails to provide sufficient knowledge
to support downstream applications. Integrating various KGs
for knowledge fusion and enrichment is an effective solution
to this issue. Entity alignment, identifying equivalent entities
across KGs, is a critical task in KG integration [30]. The root
challenge for entity alignment stems from the heterogeneous
symbolic representations of various KGs, such as different
naming rules and multilingualism [30]. Recent advances
in representation learning techniques hasten the advent of
embedding-based entity alignment [2], [4], [5], [21], [31], [32],
[34], [37], [44], [51], [55], [58]. It alleviates the heterogeneity
problem by learning an embedding space to represent differ-
ent KGs in which similar entities are kept close together while
dissimilar ones are separated far apart. Entity similarities
can thus be measured using the distances between entity
embeddings. Existing entity alignment studies fall mainly
into two broad categories, i.e., relation-based and attribute-
enhanced methods. Relation-based entity alignment methods
are built upon the assumption that similar entities usually
have similar relational structures. They adopt structural
learning techniques such as TransE [1] or graph neural
networks (GNNs) like GCN [18], GAT [38] and RGCN [28] to
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capture the structure information of entities [2], [5], [23], [24],
[32], [34], [42], [58]. The basic idea behind attribute-enhanced
methods is to incorporate additional side information, such
as attributes or attribute values, to improve embedding learn-
ing [4], [31], [37], [44], [55]. However, existing methods still
have several severe limitations that weaken their robustness
and practicability in real-world entity alignment scenarios.

Limitation 1. Relation-based methods are unable to effectively
handle the entities with few relation triples, let alone those without
relations. However, such entities typically account for a large
proportion, resulting in the so-called long-tail issue [54]. We
conduct a statistical analysis on the quantity distribution of
entities in terms of the number of their attribute triples and
relation triples in DBpedia [19]. Fig. 1 illustrates the statistics.
More than half of entities (about 55%) have fewer than two
relation triples and about 4% entities have no relations at
all. This issue would cause inadequate embedding learning
and therefore harm entity alignment performance [54]. Our
empirical study in Section 3.1 indicates that existing relation-
based methods such as MTransE [5], AliNet [34] and KEGCN
[51] are actually very weak in long-tail entity alignment. To
cope with long-tail entities, some literature pays particular
attention to incorporating attribute triples [4], [36], [37], [44],
[45], [46], [49], [51], [55] and exhibits improved performance.
Attribute triples are a good complement for long-tail entities
(refer to the first and second columns in Fig. 1). However,
attribute-enhanced methods also suffer two limitations.

Limitation 2. Most attribute-enhanced methods rely heavily
on some discriminative attributes, especially name information, to
compare entities or attributes. They also require manual attribute
selection and value cleaning to pick out and process these attributes.
However, these methods [9], [25], [36], [44], [45], [46], [49],
[52], [54], [55] would suffer from the unavailability of names
or the issues caused by name abbreviations, aliases, or partial
matches [43]. For instance, only 50.5% of entities in DBpedia

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3200981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on August 24,2022 at 01:28:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX XXXX 2

have attribute foaf:name1 to give name information. Further-
more, for cross-lingual entity alignment, the multilingualism
makes it difficult to compare entities or attributes based
on their names. Using translators to reconcile cross-lingual
KGs is hampered by difficult cases [25]. See our empirical
studies and findings in Section 3. Besides, although the
discriminative attributes have excellent discriminative ability
in identifying similar entities, different KGs usually use
different URIs to denote these attributes, making it not a
simple task to pick out these specific attribute URIs (e.g.,
those describing names). These methods usually require
domain experts to go through the KG’s schema definition
(i.e., ontology). This may cost a significant amount of effort
and time, as the ontology of a KG can be very complex,
with multiple attributes for a specific meaning (see Table 2).
When handling a new entity alignment task, we also need
to create an entirely new attribute selection process from
scratch. We also noticed that some methods like AttrE
[37], IMUSE [12] and EMGCN [25] can make use of other
general attributes, but they need hand-crafted rules for value
cleaning to eliminate the heterogeneity. This limitation has
received increasing attention in recent years [21], [35], [56],
[57]. However, there has not been a solid solution to this
issue yet. We believe that a robust method should not rely
solely on one-side features such as names.

Limitation 3. Incoherent representation spaces for relations
and attributes hinder their mutual enhancement. Relation triples
and attribute triples are two different kinds of entity features.
The embedding learning techniques for relation and attribute
triples are also different. The graph structures are captured by
GNNs in most relation-based methods [34], [42], [51], while
the natural solution for representing literal values in attribute
triples is to use pre-trained word embeddings or language
models [36], [37], [55]. As a result of the orthogonal input
features and different learning techniques, there is incoher-
ence between the embeddings learned from relation triples
and attribute triples. Existing attribute-enhanced methods
directly merge the two embedding spaces via joint learning
(e.g., AttrE [37]) or multi-view learning (e.g., MultiKE [55]).
The resulted unified embedding space would suffer from the
conflict between accurate cross-space transitions and embed-
ding normalization, and thus cannot fully abstract the seman-
tics in relation triples and attribute triples simultaneously
[6]. This challenge even prevents some attribute-enhanced
methods from representing attribute triples. Consequently,
they leverage attribute triples in an offline way. For example,
JAPE [31] abandons the use of attribute values. IMUSE [12]
and EMGCN [25] compute an attribute-based similarity for
entities by comparing the string similarity of attributes and
values. The attribute-based similarity is finally combined
with the relation-based embedding similarity for ensemble
alignment retrieval. We argue that this offline method cannot
fully exploit the complementarity of relation and attribute
triples and fail to let them enhance each other.

To resolve the above limitations, we propose RoadEA, a
robust and adaptive entity alignment method. It employs
an attribute encoder and a relation encoder to learn from
both attribute and relation triples in an adaptive manner

1. http://xmlns.com/foaf/0.1/name is the uniform resource identifier
(URI) of an attribute that describes entity names.
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Fig. 1: Quantity distribution of entities in terms of the number
(in log 10 scale) of attribute and relation triples in DBpedia.2

Darker red indicates a larger number. The value at (0, 0) is
omitted since an entity has at least one relation or attribute
triple. Due to space limitation, we only show the distribution
where the number of relations or attributes is less than 10.

(to address Limitation 1). The attribute encoder seeks to take
full advantage of general attributes rather than focusing
only on entity names. We employ a pre-trained language
model, e.g., BERT [8], to generate the representations of
attribute values. We do not use value cleaning strategies and
assume that BERT can handle the symbolic heterogeneity and
output similar embeddings for semantically related values (to
address Limitation 2). To represent an attribute, we consider its
correlated attributes and value representations rather than its
name. We first build a weighted attribute association graph
and initialize the embedding of an attribute by performing
a 1D convolution operation over its value representations.
Then, we apply a graph convolution operation to the graph
to obtain attribute embeddings. To represent an entity, we
use the attention mechanism to aggregate the representations
of its attribute-value pairs. We have no special treatment of
entity names, and the attention mechanism can highlight
helpful attributes in the learning process without manual
attribute selection (to address Limitation 2). In the relation
encoder, an entity is represented by aggregating its rela-
tional neighbors with an attention mechanism. We use a
gate mechanism to stack the two encoders for adaptive
embedding fusion, allowing for adequate interactions and
mutual enhancement (to address Limitation 3). We feed the
output embeddings of the attribute encoder as the initial
entity representations in the relation encoder to jump-start
the layer-by-layer aggregation. The two encoders are loosely
coupled. If an entity has no attributes, its embedding is
randomly initialized and trained using the relation encoder.
If an entity has no relations, its attribute-aware embedding
is the final representation. The output representations of
adaptive embedding fusion are used for alignment learning.
Our method does not require an entity to possess attribute
or relation triples. The gate mechanism to stack the two
encoders can learn a unified representation space, avoiding
the incoherent representations for relations and attributes.

Our main contributions are summarized as follows:

• We revisit existing embedding-based entity alignment
methods by analyzing their limitations and investigating

2. We use the mapping-based triples of English DBpedia, which can
be downloaded from http://downloads.dbpedia.org/2016-10/core/.
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their robustness to challenging entity alignment settings.
Empirical studies indicate that relation-based methods
cannot handle long-tail entities, and attribute-enhanced
methods heavily rely on entity names to provide align-
ment signals. As a result, they would suffer from the
unavailability of such information (e.g., relation triples
or entity names) that they need in real scenarios, leading
to a low level of robustness and adaptability. Our work
calls for more attention to robust entity alignment.

• We propose RoadEA, a robust and adaptive embedding
method for entity alignment. It stacks an attribute
encoder and a relation encoder with a gate mechanism
for adaptive embedding fusion. Its biggest advantage
lies in the good robustness to the unavailability of
relation triples, attribute triples or name information. To
the best of our knowledge, our work is the first attempt
to tackle these challenging settings of entity alignment.

• We consider four practical settings to evaluate RoadEA,
i.e., entity alignment (i) with attributes and relations,
(ii) without attributes, (iii) without relations, and (iv)
without relations and names. Experimental results on
the OpenEA dataset [35] demonstrate the effectiveness
and robustness of RoadEA. Even in the most challenging
setting (i.e., the fourth one), RoadEA can still achieve
promising performance while existing methods fail.

The remainder of this paper proceeds as follows. We first
introduce necessary preliminaries and review related work in
Section 2. Then in Section 3, we report our empirical studies
and findings. In Section 4, we describe the proposed method.
We report experimental settings and results in Section 5.
Finally, we conclude the paper with future work in Section 6.

2 PRELIMINARIES AND RELATED WORK

2.1 Definitions and Notations
We introduce the definitions and notations used in this paper.
Knowledge graph. We define a KG as a six-tuple, i.e., K =
{E ,R,A,V, Trel, Tatt}. E andR denote the sets of entities and
relations, respectively. A is the set of attributes and V is the
set of attribute values. Trel ⊆ E ×R× E is the set of relation
triples. Tatt ⊆ E ×A× V is the set of attribute triples.
Relation. A relation connects two entities. For example, the
relation triple (Kobe Bryant, birthplace, Philadelphia) in DBpedia
indicates that there is a relationship birthplace between the
two entities Kobe Bryant and Philadelphia. Although a KG is
typically built around relation triples, there are still some
entities that do not have any relations as illustrated by Fig. 1.
Existing studies pay little attention to these entities.
Attribute. Attributes give the inherent properties of entities,
and attribute values are literals. For example, the attribute
triple (Kobe Bryant, birthDate, “1978-08-23”) gives the birthday
of Kobe Bryant. Attributes are essential features of entities
and can complete entities’ information as indicated by Fig. 1.
Entity alignment. Given a source KG K1 and a target KG
K2, entity alignment is the task of identifying the one-to-
one correspondences between their entities E1 and E2, i.e.,
D = {(e1, e2) ∈ E1 × E2 | e1 ≡ e2}, where “≡” denotes the
equivalence relationship. In most cases, a small set of pre-
aligned entity pairs Dtrain ⊂ D is provided as training data
to jump-start the embedding and alignment learning.

Alignment retrieval and evaluation metrics. Given a source
entity, an embedding-based method ranks the entities of the
target KG in descending order based on their embedding
similarities to the source entity. The ground-truth counterpart
is expected to be at the first position. The widely used metrics
to assess the performance are H@k (e.g., k = 1, 5) and MRR
(mean reciprocal rank). H@k measures the percentage of the
test entity pairs whose target entities are ranked in top k, i.e.,

H@k =
|{(e1, e2) ∈ Dtest |Ranke2 ≤ k}|

|Dtest|
, (1)

where Dtest denotes the test entity alignment. Ranke2 is the
rank of the correct target counterpart in the sorted candidate
list. The target counterpart entity is expected to be ranked at
the top. MRR is the average of the reciprocal ranks:

MRR =
( ∑

(e1,e2)∈Dtest

1

Ranke2

)
· 1

|Dtest|
. (2)

Higher H@k and MRR scores indicate better performance.
Notations. We use boldface lowercase and uppercase letters
to denote vectors (e.g., embeddings) and matrices, respec-
tively. For example, e1 and e2 denote the embeddings of
entities e1 and e2, respectively. W denotes a weight matrix.
Datasets. We use the OpenEA dataset [35] in our work. It
has four entity alignment settings, i.e., EN-FR and EN-DE
(extracted from the multilingual DBpedia), as well as D-W
(DBpedia-Wikidata), and D-Y (DBpedia-YAGO). Each setting
has two scales with 15, 000 (15K) and 100, 000 (100K) entity
alignment pairs, respectively. Please refer to Section 5.2 for
more details. We abandon D-Y due to the name bias issue
that almost all the aligned entities in DBpedia and YAGO
have the same name. Hence, D-Y is unsuitable for assessing
the actual performance and robustness of attribute-enhanced
methods [21], [56], [57]. We do not use DBP15K [31] because
it only provides entity attributes without values and is denser
than real KGs, which is insufficient for our problem setting.
We also do not choose DWY100K [32], which was originally
designed for relation-based entity alignment. By contrast,
OpenEA can provide realistic evaluation settings.

2.2 Related Work
2.2.1 Relation-based Entity Alignment
Relation triples establish the relational topological structures
of entities. A widely-adopted assumption for relation-based
entity alignment is that the entities with similar relational
structures should have similar embeddings. Two different
relational learning techniques are widely used for entity
embedding learning. One is the translational KG embedding
technique such as TransE [1]. It is adopted by many methods
including JAPE [31], MTransE [5], IPTransE [58], BootEA
[32], SEA [26] and TransEdge [33]. The other technique is
graph neural networks (GNNs), including GCN [18], GAT
[38] and RGCN [28], which have drawn extensive attention
in recent years. Many studies present their GNN variants
for entity alignment, such as the vanilla GCN in GCNAlign
[42], the multi-channel GNN in MuGNN [2], the relation-
aware GNNs in RDGCN [44], HGCN [45], MRAEA [23] and
KEGCN [51], the multi-hop GNN in AliNet [34], as well as
the multi-order GNN in EMGCN [25]. All these methods
require the availability of relation triples. By contrast, our
method does not rely on relation triples.
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Fig. 2: H@1 w.r.t. the number of rel. triples on EN-FR-15K.

2.2.2 Attribute-enhanced Entity Alignment
Although attribute-enhanced methods also have a relational
learning model to learn from relation triples, their key idea
is to incorporate side information to improve embedding
learning. JAPE [31] and GCNAlign [42] consider attribute
correlations to cluster similar entities. They assume that the
entities whose attributes are highly correlated (e.g., latitude
and longitude) should be aligned with high probability. How-
ever, they ignore attribute values, and attribute correlations
cannot provide an accurate comparison to identify aligned
entities. Due to the high symbolic heterogeneity in attribute
values, most of the follow-up studies choose to skirt around
this challenge. They select some simple but discriminative
attribute values such as entity names [9], [25], [36], [50], [53],
[55], descriptions [4] and images [20] to enhance embedding
learning, and achieve promising performance. Inspired by
this, many recent GNN-based methods such as RDGCN [44],
HGCN [45] and GMNN [49] use entity name embeddings to
initialize their input layers, which has almost become the de
facto initialization method for GNN-based entity alignment.
These methods are called name-enhanced methods in this
paper. However, we find that their performance would drop a
lot without name embeddings (please see our empirical study
in Section 3). Besides, as discussed in Section 1, these methods
may also suffer from the unavailability of the discriminative
attributes in real-world scenarios. MultiKE [55] and AttrE [37]
can learn from general attribute triples. Both of them regard
the attribute values as “nodes” (and attributes as “relations”)
such that the relational learning techniques like TransE [1]
and ConvE [7] can be used again for embedding learning. We
find that their success is also attributed to the use of name
information (please see the results in Table 3). IMUSE [12]
and EMGCN [25] can also utilize general attribute triples,
but they need hand-craft rules for value cleaning to compare
attribute values. They also rely on machine translation to
reconcile cross-lingual KGs. Our method does not rely on the
name information, value cleaning or machine translation.

3 EMPIRICAL STUDY

In this section, we report our empirical studies and seek to
answer the following research questions:

3.1 What about the Performance on Long-tail Entities?
It is intuitive that aligning entities with rich relation triples
is easier than long-tail ones. In this study, we compare the
performance of relation-based methods on aligning rich and
long-tail entities. We divide the aligned entity pairs in the test
data of EN-FR-15K into several groups based on the number
of their relation triples. The triple number of a test entity pair

TABLE 1: Number of aligned attribute triples in OpenEA.

EN-FR-15K EN-DE-15K D-W-15K
# aligned entity pairs 15,000 15,000 15,000
# aligned name triples 8,710 12,068 2,222
# aligned attribute triples 27,649 28,887 13,895
# aligned attribute triples w/o names 18,135 16,360 8,393

is defined as the average number of relation triples that the
involved entities have. The performance is assessed by H@1.
Fig. 2 compares the results of three popular relation-based
methods: MTtransE [5], AliNet [34] and KEGCN [51]. They
all perform poorly in aligning long-tail entities (those with
fewer than 2 relation triples), and their H@1 scores increase
as the number of relation triples increases. This is in accord
with our expectations, as more relation triples provide more
features for embedding learning. The finding demonstrates
the vulnerability of relation-based methods. It also reveals
the importance of incorporating attribute triples.

3.2 What if Entity Names Are not Available?
We studied the OpenEA dataset [35] to see whether aligned
entities have similar names. Non-English attributes and
values are translated into English. Table 1 shows the number
of aligned name triples3 of aligned entities. The attributes
used in name triples are given by Table 2. We find a large
number of aligned entity pairs whose two entities have
the same name. This explains why many methods use
name embeddings to assist entity alignment. However, these
methods suffer from a sharp performance reduction when
lacking names. We compare the popular name-enhanced
methods AttrE [37], MultiKE [55] and RDGCN [44] in two
settings with or without entity names, respectively, as shown
in Table 3. Refer to Section 5.5.2 for implementation details.
The H@1 of RDGCN declines from 0.755 to 0.255 when
entity names are unavailable. This finding provides a new
insight of existing name-enhanced entity alignment methods
and calls for robust solutions. Besides, although each entity
is endowed with a literal name, in the case of the low-
resource setting or when entity names are too heterogeneous,
entity names may not provide helpful alignment signals.
This finding is supported by the small number of aligned
name triples in D-W-15K. The heterogeneity in DBpedia and
Wikidata is more significant than that in EN-FR and EN-
DE. Fortunately, there are also a larger number of aligned
attribute triples except for name triples. Our work seeks to
make use of these general attribute triples.

3.3 Is Manual Feature Selection Really Robust?
We agree that some manually selected attributes, such as
entity names and descriptions, can help entity alignment.
However, due to the schema heterogeneity of different KGs,
it is a non-trivial task to retrieve entity names from attribute
triples. For instance, after reviewing the attributes in DBpedia
[19], Wikidata [39] and YAGO3 [27], we find (at least) 11
attributes used to describe entity names, as listed in Table 2.
Except for the widely-used core ontologies of the Semantic
Web, e.g., the RDF Schema,4 SKOS Schema5 and FOAF

3. The attribute triples describing entity names are called name triples,
e.g., (dbr:Kobe Bryant, foaf:name, “Kobe Bean Bryant”) in DBpedia.

4. https://www.w3.org/TR/rdf-schema/
5. https://www.w3.org/TR/swbp-skos-core-spec/
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TABLE 2: Attributes used to describe entity names.

Sources Attribute URIs
RDF Schema http://www.w3.org/2000/01/rdf-schema#label
SKOS http://www.w3.org/2004/02/skos/core#altLabel

FOAF
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/givenName
http://xmlns.com/foaf/0.1/nick

DBpedia

http://dbpedia.org/ontology/birthName
http://dbpedia.org/ontology/alias
http://dbpedia.org/ontology/longName
http://dbpedia.org/ontology/otherName
http://dbpedia.org/ontology/pseudonym

Wikidata http://www.wikidata.org/entity/P373

TABLE 3: Entity alignment results w/ or w/o name triples.

Methods EN-FR-15K EN-DE-15K D-W-15K
H@1 MRR H@1 MRR H@1 MRR

AttrE [37] 0.481 0.569 0.517 0.597 0.299 0.381
AttrE (w/o names) 0.234 0.327 0.310 0.404 0.229 0.312
MultiKE [55] 0.749 0.782 0.756 0.782 0.411 0.468
MultiKE (w/o names) 0.349 0.458 0.421 0.522 0.319 0.414
RDGCN [44] 0.755 0.800 0.830 0.859 0.515 0.584
RDGCN (w/o names) 0.255 0.355 0.511 0.592 0.331 0.409

Vocabulary,6 DBpedia and Wikidata both define their own
attributes to describe the name information of entities. In this
case, the selected attributes in Table 2 may be inapplicable to
other KGs that use different schemata for extracting entity
names. When confronted with KGs that do not completely
reuse the core ontologies of the Semantic Web (e.g., DBpedia)
or the URIs are not in human-readable format (e.g., Wikidata),
it would cost a commitment of time and energy to pick out
helpful attributes. As a result, name-enhanced methods have
low robustness and adaptability. Differently, our work seeks
to remove the dependency on manual feature selection.

3.4 How Many Alignment Signals Can Attributes Offer?
Attribute triples are an essential ingredient of a KG. For
instance, the English DBpedia has 14, 388, 539 attribute
triples. The number is very close to that of relation triples,
which is 18, 746, 176. We think that it is unwise to abandon
attribute triples in embedding learning. However, given the
lack of attribute alignment and the heterogeneity of literal
values, it remains to be seen whether the general attribute
triples (aside from name triples) contain useful information
for identifying entities. To find an answer, we have looked
into the OpenEA dataset. Based on the manually checked
attribute alignment (found by string matching and machine
translation), e.g., birthday and geburtstag, as well as the value
alignment found by exact string matching, we find a large
number of aligned attribute triples as reported in Table 1. For
example, in EN-FR-15K, there are 27, 649 aligned attribute
triples, and more than 82.4% of aligned entity pairs have
at least one aligned triple. Except for aligned name triples,
there are still 18, 135 aligned attribute triples, suggesting that
general attribute triples can also offer alignment clues.

4 ROBUST AND ADAPTIVE ENTITY ALIGNMENT

Our framework is depicted in Fig. 3. The attribute encoder
encompasses value embedding, attribute embedding, and

6. http://xmlns.com/foaf/spec/

attribute-aware entity embedding. The relation encoder
embeds entities by aggregating relational neighbors. The two
encoders are adaptively combined for embedding fusion.

4.1 Value Embedding
We represent the literal values in attribute triples by looking
up pre-trained language models or word embeddings. Given
a literal value v consisting of n tokens, denoted by v =
(t1, t2, . . . , tn), the tokens t1, t2, . . . , tn are first encoded by
pre-trained language models or word embeddings:

t1, t2, . . . , tn = Encoder(t1, t2, . . . , tn), (3)

where Encoder() can be the BERT [8] or fastText [16] encoder
that takes a sequence of tokens as input and outputs a
sequence of the corresponding token embeddings. Then,
the value representation v is calculated as

v =
1

n

n∑
i=1

ti. (4)

Value embeddings are used for attribute embedding, and the
encoder itself does not participate in training. If Encoder()
has a tokenizer, we use it to preprocess input tokens, such
as removing stop words and special characters, to avoid
unexpected tokenization and ensure an effective lookup. We
do not employ additional preprocessing strategies to clean
or reformat values such that our method can be applied to
different KGs without requiring special customization. We
discover that BERT can deal with the symbolic heterogeneity
in literal values and generate similar embeddings for seman-
tically related values. It can also handle numeric values.

4.2 Attribute Embedding
Attribute embedding is a non-trivial task because attribute
names may not deliver clear semantic meanings and there
would be multiple attributes with different names referring
to the same meaning (as shown in Table 2). For example,
the name of attribute http://www.wikidata.org/entity/P373
is “commons category”, but we find that it is usually used
to describe the entity name information in Wikidata. We
think that the semantic information of an attribute can
be reflected by its values and correlated attributes in the
KG. Specifically, given an attribute a, we first extract all
its values appeared in the KG, denoted by (va1 , v

a
2 , . . . , v

a
m),

where m is the number of values. Then, we build a 1D
convolution layer Conv() over the corresponding value
embeddings [va1 ,v

a
2 , . . . ,v

a
m] ∈ Rm×dword to get the combined

representation of values Conv([va1 ,v
a
2 , . . . ,v

a
m]) ∈ Rm×1,

where dword is the dimension of word embeddings. Each
kernel outputs a representation for these values. Let c denote
the number of convolution kernels in the layer. We use mean
pooling to merge the c representations and feed the output
into a linear layer to obtain the final representation:

aconv = Wconv

(1
c

c∑
i=1

Convi([va1 ,v
a
2 , . . . ,v

a
m])
)
, (5)

where Wconv ∈ Rdval×m represents the weight matrix in
the linear layer. Convi() denotes the i-th 1D convolution
kernel used to learn high-level representations from value
embeddings while reducing output dimension. Our method
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Fig. 3: Overview of RoadEA. Value embedding generates representations for literal values with a pre-trained language model.
Attribute embedding uses convolution techniques to learn attribute embeddings from value representations and the attribute
association graph. Attribute-aware entity embedding uses attribute-value pair embeddings to represent entities by the attention
mechanism. Relation-aware entity embedding aggregates the representations of relational neighbors. Adaptive embedding fusion
combines attribute-aware and relation-aware embeddings through a gate mechanism for alignment learning and retrieval.

is invariant to the order of input embeddings, and does not
require attributes to have the same number of values.

In addition to learning from attribute values, we think
that the correlated attributes should also participate in
the embedding learning of each other. This is because the
correlated attributes, e.g., latitude and longitude, typically
express relevant semantics. Different from JAPE that captures
pairwise attribute correlation [31], our method models such
correlation in a global way to fully exploit the high-order
relevance between attributes. We first construct an attribute
association graph for each KG, where each attribute appears
as a node and the edge between two attributes is assigned
a weight to indicate the co-occurrence frequency, as shown
in Fig. 4. Specifically, if two attributes are used together to
describe an entity, we then add an edge between the two
attributes, or increase the weight of their edge by 1 if the edge
already exists. To leverage the information of the attribute
itself, we add a self-loop edge for each attribute. The weights
are finally normalized as

ω(ai, aj) =
2 · occu(ai, aj)∑

a∈A(occu(ai, a) + occu(aj , a))
, (6)

where ω(ai, aj) denotes the normalized edge weight between
attributes ai and aj , and the function occu(ai, aj) counts the
occurrences (i.e., edge weights) of the two attributes.

We use GCN [18] to learn attribute embeddings by propa-
gating over the association graph. The output representation
matrix at the (l + 1)-th layer, denoted as A(l+1), is

A(l+1) = σ(D̃−
1
2 H̃D̃−

1
2A(l)W(l+1)

asso ), (7)

where H̃ denotes the adjacency matrix of the weighted
association graph and D̃ii =

∑
j H̃ij . A(l) is the attribute

representation matrix of the l-th layer. W(l+1)
asso is a weight

matrix in the (l + 1)-th GCN layer. The input representation

of attribute a at the first layer is its value-based embedding
aconv. σ denotes the sigmoid function. We use the output
representations of the GCN as the final attribute embeddings,
e.g., denoted as a for attribute a.

4.3 Attribute-aware Entity Embedding
After obtaining value and attribute embeddings, given an
attribute triple (e, a, v), we encode the attribute-value pair
(a, v) to represent entity e as follows:

e(a,v) = norm(a ||v), (8)

where norm() denotes the L2 normalization for reducing
the trivial optimization procedure of artificially increasing
vector norm [1], and || denotes concatenation. In this way,
the attribute-aware embedding of an entity can be learned by
inductively aggregating all its attribute-value pairs. Given
that not all attribute triples are helpful in identifying entities,
we use the graph attention mechanism in GAT [38] to learn
weights for different attributes in an end-to-end manner. As
a result, our method does not need the aforehand manual
selection to find discriminative attributes. For an entity e, we
use the mean representation of its attribute-value pairs as its
initialization, denoted as e, to jump-start the calculation of
the initial attention weights. The weights and attribute-aware
entity embeddings are further updated in the subsequent
training. Specifically, the weight between entity e and its
attribute-value pair (a, v) is calculated as follows:

α(e,a,v) =
exp
(
τ(v>[Watte ||Watte(a,v)])

)
∑

(e,a′,v′)∈T (e)
att

exp
(
τ(v>[Watte ||Watte(a′,v′)])

) , (9)

where Watt is the weight matrix of a single-layer feed for-
ward network for embedding transformation, T (e)

att represents
the set of attribute triples of entity e. τ() denotes the leaky
rectified linear unit [22]. We update e’s attribute-aware entity
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Fig. 4: Illustration of attribute graph construction in DBpedia.

embedding by aggregating its attribute triple embeddings
using the weights as follows:

eatt = norm
( ∑

(e,a,v)∈T (e)
att

α(e,a,v)e(a,v) + e
)
. (10)

The output attribute-aware entity embeddings can be directly
used for alignment learning and retrieval. They can also
be combined with relation-aware entity representations for
adaptive embedding learning.

4.4 Relation-aware Entity Embedding
To take advantage of relational structures for entity align-
ment, we further propose the relation encoder to aggregate
and propagate entity embeddings over relational neigh-
borhood subgraphs. In this way, our method can also be
applied to relation-based entity alignment. Relation triples
establish the various connections among entities. We think
that different relation triples have different effects on discrim-
inating entities. Besides, relation types can also reflect the
importance of relational neighbors. Therefore, we consider
the types of relations when updating entity representations
over relational subgraphs. Different from R-GCN [28] that
distinguishes between relational neighbors in a single KG,
in our problem setting, we also take into consideration the
impact of heterogeneous relations between different KGs.
We define the following equation to calculate the weight
between entity e and its relation r based on the l-th layer:

β
(l)
(e,r) =

exp(e
(l)
rel · r)∑

(e,r′,e′)∈T (e)
rel

exp(e
(l)
rel · r′)

, (11)

where T (e)
rel is the set of relation triples of entity e. e(l)rel denotes

the relation-aware embedding of entity e at the l-th layer.
Many existing neighborhood aggregation schemes [34] do not
capture the relation information. By contrast, we concatenate
the relation embedding and the corresponding neighbor
embedding as the relation-neighbor pair representation for
aggregation. Specifically, the representation of entity e at the
(l + 1)-th layer is calculated as follows:

e
(l+1)
rel = norm

(
W

(l+1)
rel

∑
(e,r,e′)∈T (e)

rel

β
(l)
(e,r)(r || e

′
rel

(l))
)
, (12)

where matrix W
(l+1)
rel is for embedding transformation. At

the beginning, an entity has no initial representation, i.e., we
do not know e

(0)
rel and e

′ (0)
rel . The most common strategy is to

generate initial representations randomly [1], although it may
increase the difficulty and instability of network training.

𝐞att

relation-entity composition

gate mechanism

𝒆rel
(1)

Relation-aware EmbeddingAttribute-aware 
Embedding

Multi-layer Propagation

Output

attention mechanism

attribute-value composition

𝒆rel
(𝐿)

…

Fig. 5: Adaptive embedding fusion.

Another solution is to initialize the representations with
name embeddings [44], which is not robust as we have
discussed in Section 3, so we abandon it. The relation encoder
can also work independently for entity embedding given
randomly generated initial representations. Note that the
relation-aware embedding does not contain the information
about the central entity itself, leaving an interface for the
adaptive fusion of the attribute and relation encoders.

4.5 Adaptive Embedding Fusion
As mentioned in Section 1, combining relation-based and
attribute-based embeddings remains a challenge due to their
independent representation spaces. We combine the two
encoders sequentially to produce a unified entity embedding
space through layer-by-layer training. In detail, we use
the attribute-aware embedding of an entity e as its initial
representation in the relation encoder, which is further
combined with its relation-aware embedding for propagation.
If the entity has no attributes, its initial representation is
randomly generated. We have

e
(0)
rel =

{
eatt if entity e has attribute triples
erand if entity e has no attribute triples

. (13)

It should be noted that the relation and attribute encoders can
learn embeddings independently. Hence, our method does
not rely on the existence of an entity’s relation or attribute
triples. Furthermore, we do not assume that attribute and
relation triples contribute equally to embedding learning.
Inspired by the skipping connections in neural networks
[29], we use the gate mechanism to combine the entity’s
representation itself with its relation-aware embedding. The
gate mechanism allows helpful information to enter the
following layers. Fig. 5 illustrates the proposed adaptive
embedding fusion. Specifically, at the (l + 1)-layer’s neigh-
borhood aggregation (l ≥ 0), the entity is represented as

e(l+1) = G(e
(l)
rel ) e

(l) +
(
1− G(e

(l)
rel )
)
e
(l)
rel , (14)

where G(e
(l)
rel ) = σ(We

(l)
rel + b) serves as the gate to control

the embedding fusion of the entity and its neighbors.
To further strengthen the respective embeddings learned

from attribute triples and relation triples, at the output
layer, we concatenate the attribute-aware and relation-aware
embedding of an entity as its final representation:

ê = eatt || e(L)rel , (15)

where L is the number of layers for neighbor aggregation.
We have eatt ∈ Rdatt , e(L)rel ∈ Rdrel , and ê ∈ Rd (d = datt + drel).
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The embedding concatenation does not merge the attribute-
and relation-aware embedding spaces of a KG. For an entity,
its two types of representations take up two different parts of
its final embedding. In the alignment learning and retrieval,
the attribute-aware part of an source entity embedding is
computed with the same part of target entity embeddings.
The same to the relation-aware embeddings. Therefore, our
method can avoid the incoherent representation issue.

4.6 Alignment Learning and Retrieval
The two KGs are encoded jointly in our method. We model
entity alignment as a multi-class classification task, where
the input is a source entity and the corresponding label is its
counterpart entity in the target KG. As entity alignment is
often formulated as a one-to-one matching task [30], [35], in
our classification problem, each input sample is assigned to
one and only one label. Let E ′ denote the candidate entity set
in the target KG (i.e., classification labels). For source entity
e, its alignment probability with e′ ∈ E ′ is given by

p(e,e′) =
sim(ê, ê′)∑

e′′∈E′ sim(ê, ê′′)
, (16)

where sim(ê, ê′) denotes the embedding similarity between
two entities like cosine. Let qe be the one-hot label vector
for entity e, where only the value at the position of the
correct counterpart entity is 1 and others are 0. We adopt
the label smoothing strategy as suggested in [40] to get soft
labels. For entity e, we use the cross-entropy CE() to calculate
the loss between qe and the prediction distribution over all
candidates pe. Formally, the overall loss is defined as

L =
∑
e∈Etrain

CE(qe,pe), (17)

where Etrain is the set of the source entities in the training data,
i.e., Etrain = {e | (e, e′) ∈ Dtrain}. CE(x,y) = −

∑
x log y

calculates the cross entropy.
Given entity embeddings, entity alignment can be found

by the nearest neighbor search. We use a vector similarity
metric (e.g., cosine) to calculate the embedding similarities
between the source entity and candidate entities. Then, we
use the nearest neighbor search to find the most similar
candidate as the predicted counterpart for the source entity.

4.7 Discussions on Complexity
We provide an analysis on the space and parameter complex-
ity of our method. In the worst case where the values in all
attribute triples have no duplicates, the size of the input (i.e.,
the value embeddings) is O(dword × |Tatt1 |+ dword × |Tatt2 |).
dword = 768 in BERT. The parameter complexity of attribute
embedding and entity embedding is O

(
datt× (|A1|+ |A2|)+

drel × (|R1| + |R2|) + d × (|E1| + |E2|)
)
. Considering that

|A1| + |A2| ≈ |R1| + |R2| � |E1| + |E2| < |Tatt1 | + |Tatt2 |,
the space complexity of our method is generally linear to
the number of entities and attribute triples. For alignment
retrieval, the nearest neighbor search is the most time-
consuming step due to the large candidate space and pair-
wise similarity computation. Its complexity is O(|E1| × |E2|).
For entity alignment in large KGs, we can use the divide-and-
conquer algorithms to reduce the complexity [13], or employ
advanced implementations such as the efficient similarity
search library Faiss [15] for fast nearest neighbor retrieval.

5 EXPERIMENTS

In this section, we report our experimental results. The source
code is publicly available at our GitHub repository.7

5.1 Entity Alignment Settings
We consider the following entity alignment settings:
• Conventional entity alignment (conventional EA). This is

an ideal setting for embedding-based entity alignment.
It assumes that both relation and attribute triples are
available. Most existing methods confine themselves
to this setting. However, it is unable to evaluate the
robustness of entity alignment methods. Therefore, we
further consider the following challenging settings.

• Entity alignment without attribute triples (EA w/o attri-
butes). In this setting, we remove attribute triples and
only use relation triples for entity alignment. It is a
widely-used setting for relation-based entity alignment
methods. We use this setting to evaluate the effectiveness
of the proposed relation-aware entity embedding.

• Entity alignment without relation triples (EA w/o rela-
tions). In this setting, we remove relation triples and only
use attribute triples for entity alignment. This setting is
motivated by our observation that many entities in real
KGs have no relations. To the best of our knowledge,
no previous work can handle this challenging setting
without manual feature selection or attribute alignment.

• Entity alignment without relations and names (EA w/o
relations and names). As we have discussed, using entity
names brings potential risk of test data leakage and
entity names are not always available. We design this
setting to evaluate the robustness of entity alignment
methods using general attribute triples. It is the most
challenging setting that we focus on in this work.

5.2 Benchmark Dataset
We choose the recent benchmark dataset OpenEA [35] in
the experiments, for which there are two principal reasons.
First, the regular version (V1) of the OpenEA dataset is
more approximate to the realistic entity alignment situation
than other synthetic datasets, including WK3L [5], DBP15K
[31] and DWY100K [32]. The entity degree distribution in
the V1 dataset is similar to that in real KGs. By contrast,
other datasets contain much more high-degree entities
and would give rise to a biased evaluation. Second, the
OpenEA dataset contains complete attribute triples that can
adequately support the evaluation in our problem setting.
By contrast, WK3L and DWY100K do not contain attribute
triples, and DBP15K does not provide attribute values. Hence,
they are inapplicable to our evaluation. We use the V1 version
of each dataset rather than the synthetic version (V2). All
these datasets contain both attribute triples and relation
triples. In each 15K dataset, 20% of the entity alignment
pairs are used as training data, 10% as validation data, and
70% as test data. The split ratio for the 100K datasets is the
same as the 15K datasets. We reuse the data split to ensure
a fair comparison. Please note that we do not use the D-Y
(DBpedia-YAGO) dataset in OpenEA due to its name bias
issue as we have discussed in Section 3.2.

7. https://github.com/nju-websoft/RoadEA
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TABLE 4: Entity alignment results in the conventional EA setting. Bold scores denote the best results.

Methods EN-FR-15K EN-DE-15K D-W-15K EN-FR-100K EN-DE-100K D-W-100K
H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

MTransE .247±.006 .467±.009 .351±.007 .307±.007 .518±.004 .407±.006 .259±.008 .461±.012 .354±.008 .138±.002 .261±.004 .202±.002 .140±.003 .264±.004 .204±.004 .210±.003 .358±.003 .282±.003
IPTransE .169±.013 .320±.025 .243±.019 .350±.009 .515±.012 .430±.011 .232±.012 .380±.016 .303±.014 .158±.004 .277±.008 .219±.006 .226±.014 .357±.019 .292±.017 .221±.004 .352±.008 .285±.006
AlignE .357±.023 .611±.025 .473±.024 .552±.027 .741±.020 .638±.023 .406±.010 .627±.009 .506±.010 .294±.007 .483±.008 .388±.007 .423±.009 .593±.009 .505±.009 .385±.012 .587±.014 .478±.013
SEA .280±.015 .530±.026 .397±.019 .530±.027 .718±.026 .617±.025 .360±.012 .572±.015 .458±.013 .225±.011 .399±.013 .314±.012 .341±.016 .502±.017 .421±.016 .291±.012 .470±.014 .378±.013
RSN4EA .393±.007 .595±.012 .487±.009 .587±.001 .752±.003 .662±.001 .441±.008 .615±.007 .521±.007 .293±.004 .452±.006 .371±.004 .430±.002 .570±.001 .497±.001 .384±.004 .533±.006 .454±.005
AliNet .364±.005 .597±.005 .467±.004 .604±.007 .759±.004 .673±.005 .440±.007 .628±.008 .522±.007 .266±.003 .444±.003 .348±.002 .405±.002 .546±.003 .471±.002 .369±.002 .535±.003 .444±.002
KEGCN .400±.009 .659±.012 .515±.010 .643±.005 .816±.002 .719±.003 .512±.004 .719±.003 .603±.003 .308±.002 .517±.002 .408±.002 .450±.001 .627±.002 .534±.001 .422±.001 .616±.002 .511±.002
JAPE .262±.006 .497±.010 .372±.007 .288±.016 .512±.018 .394±.016 .250±.007 .457±.010 .348±.007 .165±.002 .310±.002 .240±.002 .152±.006 .291±.009 .223±.007 .211±.004 .369±.004 .287±.004
GCNAlign .338±.002 .589±.009 .451±.005 .481±.003 .679±.005 .571±.003 .364±.009 .580±.010 .461±.008 .230±.002 .412±.004 .319±.003 .317±.007 .485±.008 .399±.007 .324±.002 .507±.004 .409±.003
IMUSE .569±.006 .717±.010 .638±.008 .580±.017 .720±.014 .647±.015 .327±.016 .523±.024 .419±.019 .439±.002 .546±.004 .492±.003 .421±.005 .516±.005 .469±.005 .276±.010 .437±.016 .355±.013
AttrE .481±.010 .671±.009 .569±.010 .517±.011 .687±.013 .597±.011 .299±.004 .467±.003 .381±.003 .403±.019 .572±.019 .483±.019 .399±.010 .554±.012 .473±.011 .209±.008 .335±.011 .273±.009
KDCoE .581±.004 .680±.004 .628±.003 .529±.014 .629±.015 .580±.014 .247±.020 .412±.029 .325±.023 .482±.005 .515±.006 .499±.005 .506±.014 .591±.019 .549±.016 .157±.003 .243±.007 .199±.005
RDGCN .755±.004 .854±.003 .800±.003 .830±.006 .895±.004 .859±.005 .515±.008 .669±.006 .584±.007 .640±.004 .732±.004 .683±.004 .722±.002 .794±.002 .756±.002 .362±.002 .485±.002 .420±.002
MultiKE .749±.004 .819±.005 .782±.004 .756±.004 .809±.003 .782±.003 .411±.010 .521±.017 .468±.012 .629±.002 .680±.002 .655±.002 .668±.002 .712±.002 .690±.001 .290±.006 .357±.011 .326±.009
RoadEA .810±.006 .854±.004 .831±.005 .868±.009 .905±.008 .886±.010 .653±.003 .789±.002 .714±.002 .743±.002 .799±.004 .769±.003 .831±.001 .868±.005 .847±.006 .572±.007 .694±.008 .629±.007

5.3 Baseline Methods
We compare RoadEA with fourteen popular entity alignment
methods from previous work. They include (i) relation-based
methods MTransE [5], IPTransE [58], AlignE [32], SEA [26],
RSN4EA [11], AliNet [34] and KEGCN [51]; (ii) attribute-
enhanced methods JAPE [31], GCNAlign [42], IMUSE [12],
AttrE [37] and KDCoE [4]; and (iii) name-enhanced methods
RDGCN [44] and MultiKE [55]. Please refer to Section 2
for more details about these baseline methods. For a fair
comparison, we reuse the OpenEA’s implementations of
these baselines expect KEGCN. We reuse the official code of
KEGCN to produce its results on the OpenEA dataset with
careful hyper-parameter tuning. We do not compare with
JarKA [3] and EMGCN [25] because they use the alignment
signals from machine translation while our method does
not. We also do not consider some modern semi-supervised
methods such as BootEA [32] and MRAEA [23] that augment
the seed entity alignment iteratively, because the baselines
and our method are all in the supervised setting.

5.4 Implementation Details
We initialize trainable parameters with the Xavier initializer
[10], and optimize the loss in Eq. (17) using Adam [17]. We
search among a range for hyper-parameter values, e.g., the
learning rate in {0.00005, 0.0001, 0.0005, 0.001}, the layer
number in {1, 2, 3, 4}. We use early stop to terminate training
based on the MRR score tested every 20 epochs on the
validation data. The selected settings for hyper-parameters
are reported as follows. The embedding dimensions are
dword = 768, dval = datt = 32, drel = 320, and d = 352. The
learning rate is 0.0001. We use two layers (i.e., L = 2) for
embedding aggregation. The number of convolution kernels
c = 2. The batch size is 1024 for the 15K dataset, and 4, 096
for the 100K dataset. For each entity, the maximum number
of attribute triples in attribute aggregation is 15, and the
maximum number of relation triples for relational neighbor
aggregation is 20. If an entity has more than 15 attribute
triples (or 20 relation triples), we randomly sample attribute
(or relation) triples for training in each epoch. We use Cosine
to measure embedding similarities. We use bert-as-service
(base model, uncased) [47] to generate value embeddings.

Following the convention, the default alignment direction
is from left to right. Taking D-W as an example, we regard
DBpedia as the source KG and seek to find the counterparts

of source entities in the target KG Wikidata. As introduced
in Section 2.1, we report the H@1, H@5 and MRR scores to
assess entity alignment performance. Following OpenEA, we
report the average results of five-fold cross-validation. For
baseline methods, in the conventional EA setting, we directly
reuse the reported results in the OpenEA paper. In other
settings, we try our best to tune them to obtain good results.

5.5 Results and Analyses
We first present the results under different settings in
Sect. 5.5.1. Then in Sect 5.5.2, we analyze the results from six
perspectives to gain a clear and thorough understanding. Fi-
nally, we summarize the experimental findings in Sect. 5.5.3.

5.5.1 Results in Different Settings

Conventional EA. In this setting, we compare our method
RoadEA against all baselines. Table 4 presents the results.
We observe that RoadEA achieves significantly improved
performance. It outperforms all three groups of baselines
by a large margin in terms of all metrics and datasets. For
example, RoadEA improves the second-best scores by 17.6%
on H@1, 7.0% on H@5, and 12.2% on MRR, averagely. This
is because RoadEA can fully leverage relation-aware and
attribute-aware embeddings for alignment learning, and let
them benefit each other.
EA w/o attributes. In this setting, the initial entity representa-
tions for relation-aware embedding are randomly generated
rather than learned from attribute triples. We compare
this variant with the seven relation-based entity alignment
methods: MTransE, IPTransE, BootEA, SEA, RSN4EA, AliNet
and KEGCN. We also choose the attribute-enhanced methods
JAPE, GCNAlign, IMUSE, KDCoE, AttrE, RDGCN and
MultiKE as baselines. We remove all attribute triples from
the datasets to run these baselines and get their results.
Table 5 shows the results. RoadEA still outperforms six
relation-based methods (expect KEGCN on D-W-15K) and all
attribute-enhanced baselines on all datasets. The average
performance improvement compared to the second-best
scores are 21.1%, 10.9% and 14.8% on H@1, H@5, and
MRR, respectively. This demonstrates the effectiveness of
our relation-aware entity embedding module. Comparing
the results in Tables 4 and 5, we further find that RoadEA
increases the lead from attribute-enhanced methods when
only using relation triples. For example, on EN-FR-15K of
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TABLE 5: Entity alignment results in the setting of EA w/o attributes.

Methods EN-FR-15K EN-DE-15K D-W-15K EN-FR-100K EN-DE-100K D-W-100K
H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

JAPE .251±.001 .479±.005 .358±.002 .302±.011 .527±.013 .408±.011 .255±.001 .460±.002 .352±.001 .164±.001 .308±.001 .238±.001 .153±.002 .292±.002 .224±.002 .211±.005 .368±.007 .287±.006
GCNAlign .323±.001 .568±.001 .434±.002 .470±.006 .664±.004 .558±.005 .350±.001 .564±.009 .445±.004 .213±.006 .385±.008 .298±.006 .298±.008 .460±.007 .377±.008 .299±.003 .477±.007 .382±.005
IMUSE .256±.002 .471±.007 .358±.004 .473±.007 .646±.006 .555±.006 .321±.005 .509±.006 .410±.005 .212±.003 .367±.005 .292±.004 .333±.005 .477±.006 .406±.005 .286±.001 .444±.001 .363±.001
KDCoE .186±.001 .337±.002 .260±.002 .345±.008 .505±.004 .422±.006 .220±.010 .355±.011 .285±.013 .160±.004 .271±.008 .217±.006 .248±.004 .372±.005 .311±.005 .227±.007 .349±.011 .286±.009
AttrE .234±.002 .438±.001 .332±.002 .511±.006 .680±.008 .590±.006 .322±.009 .510±.008 .410±.010 .213±.006 .367±.008 .292±.007 .337±.010 .483±.011 .410±.011 .287±.005 .446±.006 .365±.005
RDGCN .255±.004 .476±.009 .355±.003 .511±.004 .694±.003 .592±.002 .331±.001 .510±.008 .409±.003 .158±.006 .264±.008 .209±.005 .309±.003 .413±.005 .358±.002 .273±.005 .381±.004 .322±.004
MultiKE .337±.005 .580±.010 .449±.008 .576±.003 .770±.003 .662±.001 .403±.010 .639±.013 .506±.011 .269±.004 .454±.004 .361±.003 .378±.004 .550±.002 .462±.003 .356±.003 .557±.005 .450±.004
RoadEA .447±.006 .683±.002 .552±.004 .669±.004 .834±.004 .742±.004 .495±.005 .694±.003 .584±.003 .303±.001 .492±.001 .393±.001 .458±.008 .620±.007 .533±.007 .432±.004 .611±.003 .513±.003

TABLE 6: Entity alignment results in the setting of EA w/o relations.

Methods
EN-FR-15K EN-DE-15K D-W-15K EN-FR-100K EN-DE-100K D-W-100K

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR
AttrE .151±.006 .286±.008 .219±.007 .155±.005 .273±.001 .214±.002 .036±.001 .092±.003 .068±.001 .084±.004 .171±.004 .129±.004 .113±.001 .194±.002 .153±.001 .012±.002 .035±.004 .026±.002
MultiKE .704±.002 .728±.004 .716±.003 .713±.003 .739±.005 .726±.004 .324±.004 .335±.005 .331±.003 .628±.004 .645±.002 .636±.003 .670±.004 .685±.002 .677±.004 .223±.001 .228±.001 .226±.001
RoadEA .747±.001 .787±.003 .766±.001 .808±.001 .850±.003 .828±.002 .376±.003 .423±.003 .403±.000 .695±.004 .751±.004 .722±.004 .745±.005 .795±.004 .769±.005 .289±.003 .349±.002 .319±.003

the conventional EA setting, RoadEA outperforms MultiKE
on H@1 by 8.14%, but the improvement extends to 32.6% in
the setting of EA w/o attributes. This shows the strength of
our method in making use of relation triples.

EA w/o relations. We compare RoadEA against AttrE and
MultiKE because they are the only two baseline methods
that can work without relation triples. Table 6 presents the
results. RoadEA outperforms AttrE and MultiKE in this
setting. Moreover, the performance of AttrE and MultiKE
declines radically on a few datasets compared with that in
the conventional EA setting. For example, the H@1 results
of AttrE are less than 0.16 on all datasets. By contrast,
the performance of RoadEA does not decline too much.
This is because removing relation triples reduces RoadEA’s
performance in aligning entities with rich relations, but
the number of these entities only accounts for a small
proportion. MultiKE also does not suffer severe performance
degradation in this setting, because it uses entity names
as an important feature view, and the strong alignment
signals in names guarantees its performance. However, as
previously stated, such performance is not robust. RoadEA
has no special treatment of entity names, but still outperforms
MultiKE. The results indicate that RoadEA is robust against
the unavailability of relation triples. The performance drop
on D-W-15K is dramatic compared to that on other two
datasets. This is because the attribute triples in D-W are
highly heterogeneous, significantly increasing the difficulty
of aligning entities solely based on attribute triples.

EA w/o relations and names. This is more challenging than
the above setting of EA w/o relations. The only available
information is the general attribute triples. To the best of our
knowledge, no previous work has considered this setting. For
a clearer comparison, we show in Fig. 6 the H@1 results and
the performance reduction compared against those under
the conventional EA setting as listed in Table 4. Both AttrE
and MultiKE fail to work under this setting. Specifically, the
H@1 scores of AttrE and MultiKE are both less than 0.02,
which decline radically with the drop ratio of more than
94.0% on all datasets compared with the conventional setting.
Compared against the setting w/o relations, the drop ratio
reaches more than 90.0%. These results indicate that AttrE
and MultiKE cannot take advantage of the general attribute
triples for entity alignment, and they highly depend on name

triples. Although the H@1 results of our method RoadEA
also suffer from a decline, they are still much better than
AttrE and MultiKE. On the most heterogeneous dataset D-W,
RoadEA still shows promising performance. This experiment
demonstrates the excellent robustness of RoadEA.

5.5.2 Further Analyses

Impact of dataset heterogeneity. Name-enhanced methods
perform worse on D-W than on EN-FR and EN-DE. This is
because the D-W datasets contain a much smaller proportion
of name attributes but have greater attribute heterogeneity
than the other two datasets. It is a big challenge for name-
enhanced methods like RDGCN and MultiKE. By contrast,
RoadEA still shows promising performance on D-W. Our im-
provement over name-enhanced methods is more significant
on D-W than on the other datasets. Our method does not rely
on names, and can effectively leverage other general attribute
triples. Besides, on EN-FR and EN-DE, attribute-enhanced
methods generally outperform relation-based ones but fall
behind name-enhanced methods. It is nearly the opposite on
the D-W datasets. This finding also indicates the importance
of attributes including names for entity alignment.
Impact of dataset scale. The performance of our method
and also other baselines on 100K datasets is lower than that
on the corresponding 15K datasets. This is because a 100K
dataset has a much larger candidate space than a 15K dataset.
It is difficult to rank the correct counterpart at the top place
from an extensive candidate space.
Impact of relation and attribute triples. To further study the
impact of the absence of attributes or relations, we compare
RoadEA with AttrE and MultiKE in the settings where K%
relation or attribute triples removed. Table 7 displays the
results with K = 0, 50, 100 on the EN-FR datasets. We do
not compare with name-enhanced methods as they are not
applicable in this setting. In general, removing more attribute
or relation triples causes all three methods to perform worse.
MultiKE relies heavily on attribute triples, including name
triples. Removing some attribute triples can significantly re-
duce its performance, whereas removing relation triples has
little effect. Although AttrE can leverage both attribute and
relation triples, its performance is not promising when some
attributes or relations are removed. RoadEA outperforms
AttrE and MultiKE in all settings, showing its robustness to
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Fig. 6: Average H@1 of AttrE, MultiKE and RoadEA w/o
relations or names, along with their performance reduction
ratio compared with that in the conventional setting.

TABLE 7: Average H@1 results when K% triples removed.

Dataset EN-FR-15K
Removed trip. None 100% attr. 50% attr. 50% attr. & rel. 50% rel. 100% rel
AttrE .481 .234 .259 .149 .322 .151
MultiKE .749 .337 .433 .416 .681 .704
RoadEA .810 .447 .460 .427 .775 .747
Dataset EN-FR-100K
AttrE .403 .213 .240 .118 .275 .084
MultiKE .629 .269 .302 .273 .622 .628
RoadEA .743 .303 .331 .312 .704 .695

the absence of attributes or relations. In general, attribute
triples contribute more than relation triples in RoadEA.

Robustness to the unavailability of names. We compare
RoadEA with AttrE, RDGCN and MultiKE in the setting
without entity names. Table 8 presents the results. We remove
name triples from the datasets for AttrE and our method,
leaving only general attribute triples and relation triples. We
disable the name view in MultiKE and replace the name-
based initialization in RDGCN with randomly generated
representations. The performance of AttrE, RDGCN, and
MultiKE drops a lot compared to their results in the con-
ventional setting. For instance, the H@1 scores of AttrE,
RDGCN and MultiKE on 15K datasets drop by 38.3%,
46.8% and 40.0% on average, respectively. On 100K datasets,
their performance declines by 52.2%, 52.4% and 41.7% on
average, respectively. Interestingly, their performance is even
poorer than many relation-based methods. This shows that
many attribute-enhanced methods rely excessively on the
name information, which is defectively biased. Inevitably,
RoadEA also suffers from a performance decline, with a
reduction ratio of 27.8% on H@1 averagely. However, it still
outperforms attribute-enhanced methods.

Effectiveness in long-tail entity alignment. To investigate
the effectiveness of our method in handling long-tail entity
alignment, we divide the entity alignment pairs in the test
set into multiple groups based on the number of their
involved relation or attribute triples. Fig. 7 compares the
H@1 scores of RoadEA and its two variants in each group.
We can see from Fig. 7 (a) that most of the entity alignment
pairs involve a few relation triples. For example, there are
70.6% of entity alignment pairs, in which each entity has
no more than five relation triples. RoadEA w/o attributes
performs poorly in aligning the long-tail entities. Through
the use of attribute triples, both RoadEA and RoadEA w/o
relations can effectively handle long-tail entity alignment.
This is where our improvement comes. The H@1 score of
RoadEA in aligning entities with degrees within the interval
(0, 2] reaches 0.869 on EN-FR-15K, much higher than the

TABLE 8: Entity alignment results without name triples.

Methods EN-FR-15K EN-DE-15K D-W-15K
H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

AttrE .234 .422 .327 .310 .499 .404 .229 .397 .312
RDGCN .255 .476 .355 .511 .694 .592 .331 .510 .409
MultiKE .349 .585 .458 .421 .638 .522 .319 .519 .414
RoadEA .525 .640 .579 .709 .798 .750 .458 .630 .538

EN-FR-100K EN-DE-100K D-W-100K
AttrE .140 .252 .198 .142 .256 .200 .153 .261 .208
RDGCN .158 .264 .209 .309 .413 .358 .273 .381 .322
MultiKE .279 .465 .372 .340 .507 .419 .231 .426 .330
RoadEA .369 .464 .412 .573 .668 .618 .310 .434 .370
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(a) Number of relation triples

RoadEA w/o relations w/o attributes

Number of entity alignment pairs within interval
4,214 3,195 2,047 727 317
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(b) Number of attribute triples

1,901 5,751 2,600 248

Fig. 7: H@1 in different test alignment groups on EN-FR-15K.

baselines in Fig. 2. As shown in Fig. 7 (b), the long-tail issue
also exists in attribute triples where most entity alignment
pairs involve a few attribute triples. Our method and variants
produce promising results when aligning entities with no
more than two attributes. This experiment demonstrates the
effectiveness of our method in dealing with the long-tail
issue and the complementarity of relations and attributes.
Effectiveness in combining relations and attributes. From
the results in the four settings, we also notice that MultiKE
achieves comparable and even better performance without
using attribute triples on the D-W datasets. This is because
the attributes in D-W are too heterogeneous for embedding
learning and have a negative impact on directly combining
attribute-based and relation-based embeddings in MultiKE.
By contrast, RoadEA achieves better performance than its
variants without relations or attributes on all datasets. This
shows that our relation-aware and attribute-aware encoders
can benefit from each other to get improved performance.

5.5.3 Summary
The good performance of RoadEA is due to its ability to fully
utilize relation and attribute triples, as well as its robustness
to the unavailability of entity names. When entity names
are available, attribute-aware embeddings contribute more
than relation-aware embeddings. When entity names are
unavailable, relation-aware embeddings contribute more if
the attribute heterogeneity is great (as in D-W). Otherwise,
attribute-aware embeddings play a more important role.
RoadEA performs well in aligning long-tail entities via the
adaptive fusion of relation- and attribute-aware embeddings.

5.6 Ablation Studies
We evaluate the effectiveness of RoadEA’s technical parts.

5.6.1 Effectiveness of the Gating Mechanism
RoadEA employs a gating mechanism to aggregate the neigh-
bor representations selectively. To verify its effectiveness,
we compare it with a degraded variant without the gating
mechanism (i.e., RoadEA w/o gating). The variant directly
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Fig. 8: Performance comparison of RoadEA w/ and w/o the
gating mechanism and convolution operator.

aggregates all the neighbor representations without prefer-
ence and combines them with the central entity embedding
as the output. We can see from Fig. 8 that the performance of
the degraded variant decreases in varying degree compared
with the full version of RoadEA. Moreover, the performance
reduction on the D-W datasets is more significant than that on
EN-FR and EN-DE. This is because the entity heterogeneity
in the EN-DE and EN-FR datasets is small, and there is no
need for too much feature selection when aggregating the
neighbor entity embeddings. While in D-W datasets, aligned
entities between DBpedia and Wikidata have very different
attributes, making the direct combination of neighboring
entity representations bring substantial adverse effects on
alignment learning. This experiment shows the effectiveness
and robustness of the gating mechanism used by RoadEA.

5.6.2 Effectiveness of the Convolution Operation
RoadEA uses value convolution to represent an attribute. To
evaluate its effectiveness, we compare it with an alternative
method that first uses a fully-connected layer for value em-
bedding transformation and then averages these embeddings
to represent an attribute. This is equivalent to a degraded
variant of our method without the Conv() function in Eq. (5),
and is denoted as RoadEA w/o conv. The results are also
shown in Fig. 8. We can see that removing the convolution
operation results in a decrease in performance on all datasets.
For example, on EN-FR-15K, the H@1 score declines from
0.810 to 0.785 when removing value convolution. The results
demonstrate the effectiveness value convolution. The reason
is that convolution is a good feature extractor to learn high-
level representations from value embeddings.

5.6.3 Impact of Value Embeddings
We use BERT [8] to encode attribute values due to its out-
standing performance in various tasks. To explore whether
RoadEA can still achieve advanced performance using other
word embeddings, we replace BERT with another popular
word encoder fastText [16]. We consider the setting of EA
w/o relations, which is suitable for evaluating the impact of
value embeddings. Table 9 presents the results. Using fastText
indeed causes reduced performance of RoadEA. For example,
on 15K datasets, the average performance drops on H@1,
H@5 and MRR are 10.2%, 11.2%, and 10.9%, respectively.
The results are broadly in line with expectations as fastText
is weaker than BERT in representing literal words. However,
RoadEA without BERT still outperforms AttrE and MultiKE
in Table 6. This experiment demonstrates the generalization
of RoadEA, which does not entirely rely on BERT.

5.6.4 Summary
Our method relies on the attention mechanism to aggregate
attribute or relation embeddings. The gating mechanism and

TABLE 9: Entity alignment results using different value
embeddings in the w/o relation setting.

Methods
EN-FR-15K EN-DE-15K D-W-15K

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR
RoadEA (fastText) .673 .710 .692 .739 .789 .762 .341 .368 .356
RoadEA (BERT) .747 .787 .766 .808 .850 .828 .376 .423 .403

EN-FR-100K EN-DE-100K D-W-100K
RoadEA (fastText) .617 .699 .656 .640 .706 .671 .193 .229 .211
RoadEA (BERT) .695 .751 .722 .745 .795 .769 .289 .349 .319

0 50 100 150 200

100K

15K RoadEA RDGCN MultiKE

sec.

Fig. 9: Average training time of one epoch on EN-FR datasets.

value convolution are both effective and can improve H@1 by
0.01 to 0.07. The BERT encoder for value embeddings plays
a big role. It improves H@1 by 0.04 to 0.11 when compared
to fastText, but RoadEA still works well without BERT.

5.7 Running Time Comparison
We compare the running time of RoadEA with RDGCN and
MultiKE in Fig. 9. We show the average training time of
one epoch on EN-FR datasets, and observe similar results on
other datasets. The experiment is conducted on a workstation
with an Intel Xeon E3 3.3GHz CPU and 256GB memory. We
follow RDGCN and do not use GPUs due to the limited
graphics memory that does not have sufficient capacity
for word embeddings. On EN-FR-15K, RoadEA costs more
time (18.3s) for one-epoch training than MultiKE (12.2s)
and RDGCN (6.7s). The reason lies in that our method is
deeper than MultiKE and uses more features than RDGCN.
MultiKE is a multi-view method, and two views (three in
total) use shallow models for embedding learning, leading to
high efficiency. RDGCN does not introduce attribute triples
for embedding learning. On the 100K dataset, RDGCN
becomes the slowest method, and MultiKE is still the
fastest one. The most time-consuming part of RDGCN is
the kNN-based negative sampling. Its time complexity is
O(|E1| × |E2|), and would cost much time during training
large KGs. RoadEA does not use negative sampling, and
shows comparable performance in running time, although
it employs comprehensive features. In general, our method
gets a good trade-off between effectiveness and efficiency.

5.8 Case Study
To further investigate how our method can align entities
based on attribute information, we give a case study on two
aligned entities referring to “Star Wars: The Clone Wars” in
DBpedia8 and Wikidata9. The two aligned entities are not
correctly found when only using relation triples for model
training. We find that our attribute triple embeddings can
automatically capture some helpful attribute alignment and
value alignment to identify the two entities. Fig. 10 shows a
visualization of the attribute-value alignment automatically
found by the greedy similarity search. The colored block

8. https://dbpedia.org/page/Clone Wars (Star Wars)
9. https://www.wikidata.org/wiki/Q616313
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Fig. 10: Value embedding similarity of the automatically
found attribute alignment of entity “Star Wars: The Clone
Wars” in Wikidata and DBpedia. The Y-axis gives attributes
in Wikidata while the X-axis denotes attributes in DBpedia.
Gray blocks mean no attribute alignment.

indicates that the corresponding attributes (along with their
values) are found similar (green blocks) and even identical
(red blocks). In Wikidata, each attribute is encoded by an ID
starting with “P”. Such surface names (a.k.a., localnames)
of attributes are meaningless and cannot be used to find
attribute alignment as in some attribute-enhanced methods
such as IMUSE [12] and EMGCN [25]. For easy reading, we
label attributes with their human-readable names in brackets.
Although we do not train RoadEA with any attribute
alignment, the method can still learn similar representations
for semantically similar attributes, such as P580 (start time)
in Wikidata and releaseDate in DBpedia, as well as P582 (end
time) in Wikidata and completionDate in DBpedia. This is a
significant difference between RoadEA and other methods
that leverage attributes in an offline way and rely on the
symbolic representations of attributes and values to calculate
similarities. The significant attribute heterogeneity results in
all models’ poor performance on D-W. Moreover, although
the name information is not found in Wikidata, its description
is fortunately aligned to the name in DBpedia. The similarity
of their corresponding value embeddings is relatively low,
but such alignment also contributes to the entity alignment
learning. Besides, the attribute values of other aligned
attributes have high similarities. They together help the
method learn similar embeddings for the two entities.

6 CONCLUSIONS

In this paper, we revisit embedding-based entity alignment
methods by conducting extensive experiments to study the
impact of entity names, attribute and relation triples on entity
alignment. Our findings reveal that relation-based methods
cannot effectively handle long-tail entities, and attribute-
enhanced methods rely heavily on the name information.
We further present RoadEA, a robust and adaptive entity
alignment method. It employs attribute and relation encoders
to learn entity embeddings by attention mechanisms. The
two encoders are combined using a gating mechanism for
adaptive embedding fusion. RoadEA does not require the
availability of attribute or relation triples. Our experiments in
four entity alignment settings demonstrate the effectiveness
and robustness of our method. For future work, we plan to

extend our method to other alignment tasks, such as ontology
matching and entity resolution in databases.
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